Super Pair Sum Labeling of Graphs

نویسندگان

  • P. Sugirtha Department of Mathematics Dr. Sivanthi Aditanar College of Engineering Tiruchendur-628 215,Tamil Nadu, INDIA.
  • R. Vasuki Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215,Tamil Nadu, INDIA
  • S. Arockiaraj Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi-626124, Tamil Nadu
چکیده مقاله:

Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {it super pair sum graph}. Here we study about the super pair sum labeling of some standard graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

متن کامل

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

متن کامل

edge pair sum labeling of some cycle related graphs

let g be a (p,q) graph. an injective map f : e(g) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: v (g) → z - {0} defi ned by f*(v) = σp∈ev f (e) is one-one where ev denotes the set of edges in g that are incident with a vertex v and f*(v (g)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} u {±k(p+1)/2} according a...

متن کامل

edge pair sum labeling of spider graph

an injective map f : e(g) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph g(p, q) if the induced vertex function f*: v (g) → z − {0} defined by f*(v) = (sigma e∈ev) f (e) is one-one, where ev denotes the set of edges in g that are incident with a vetex v and f*(v (g)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} u {k(p+1)/2} accordin...

متن کامل

Edge Pair Sum Labeling of Some Subdivision of Graphs

An injective map f : E(G) → {±1,±2, · · · ,±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f∗ : V (G) → Z − {0} defined by f∗(v) = ∑ e∈Ev f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f∗(V (G)) is either of the form { ±k1,±k2, · · · ,±k p 2 } or { ±k1,±k2, · · · ,±k p−1 2 } ∪ { ±k p+1 2 } according as ...

متن کامل

Minimal Sum Labeling of Graphs

A graph G is called a sum graph if there is a so-called sum labeling of G, i.e. an injective function l : V (G) → N such that for every u, v ∈ V (G) it holds that uv ∈ E(G) if and only if there exists a vertex w ∈ V (G) such that l(u) + l(v) = l(w). We say that sum labeling l is minimal if there is a vertex u ∈ V (G) such that l(u) = 1. In this paper, we show that if we relax the conditions (ei...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 49  شماره 2

صفحات  13- 22

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023